

COURSE MODULE

Program Title	M. Pharmacy		
Department	Pharmaceutical Chemistry		
Course Title	Pharmaceutical Process Chemistry (MPC 204T)		
1. NAME OF INSTITUTION	: Y. B. CHAVAN COLLEGE OF PHARMACY,		

2. AFFILIATED UNIVERSITY :	DR. BABASAHEB AMBEDKAR
	MARATHWADA UNIVERSITY, AURANGABAD

AURANGABAD

3.	DEPARTMENT	:	PHARMACEUTICAL CHEMISTRY
4.	PROGRAM TITLE	:	M. PHARM.

4.1. Program Specific Outcome: After completing the program, student will be able to:

PSO-1: Highlight advancements in knowledge associated with medicinal chemistry, Natural products chemistry, drug discovery, drug design and analytical techniques.

PSO-2: Independently carry out the design of bioactive molecules and synthetic research work.

PSO-3: Interpret the spectra of synthetic compounds, natural products and determine their structures.

PSO-4: Build professional, computational, analytical and critical thinking skills

PSO-5: Explain the unit operation and unit reactions in process chemistry

5. COURSE SPECIFICATION :

5.1.Course Identification and General Information

a.	Course Title:	Pharmaceutical Process Chemistry		
b.	Course Number/Code	MPC 204T		
с.	Credit Hours	Theory	Practical	
		60(4hr/wk)	00	
d.	Study level/semester at which this course is offered	Second Semester M. Pharm.		
e.	Pre-requisite	Unit process and unit operation		
f.	Co-requisite	Common organic reaction and industrial scale up process		
g.	Program in which the course is offered	M. Pharm		
h.	Language of teaching the course	English		
i.	Prepared by	Dr. Mirza Shahed Baig (M. Pharm IInd SEM)		
j.	Approved by HOD	Dr. K. G. Baheti		

5.2. Course Description:

The course is designed to impart knowledge on the development and optimization of a synthetic route/s and the pilot plant procedure for the manufacture of Active Pharmaceutical Ingredients (APIs) and new chemical entities (NCEs) for the drug development phase.

5.3. Course Objectives:

- > The strategies of scale up process of API and intermediates
- > The various unit operations and various reactions in process chemistry

6.0. Course Outcomes (COs) : (Min. 4 and Max. 6)

(Use Bloom's Taxonomy words)

After completion of course, the student should be able to

CO Code	Course outcome		
CO 204.01	Differentiate between unit operation and unit process of API industry		
CO 204.02	Design the synthetic routes for organic compounds involving unit process		
	reaction		
CO 204.03	Explain the strategies of scale up process of API's & intermediates including		
	impurities in API.		
CO 204.04	Understand industrial safety measure, possible hazards, health and safety		
	assessments.		

6.1. Knowledge and Understanding

(Alignment of PSOs to COs)

Course outcome	Program Specific Outcome				
Code	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5
CO 204.01	Н	-	-	М	-
CO 204.02	Μ	Н	-	М	Н
CO 204.03	Μ	Н	-	-	Н
CO 204.04	H	H	-	H	

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low); 2: Moderate (Medium); 3: Substantial High); If there is no correlation, put '-'

6.2. Teaching and Assessment Methods for achieving learning outcome:

Teaching Strategies(methods)/Tools used	Methods of Assessment
Lectures (Constructivist learning)	Formative Assessment
Collaborative learning (Discussion)	Case study
Project based Learning	Class test
Blended learning	Multiple choice questions
Inquiry based learning	Assignments
Flash cards	Seminar
Video	Viva Voce
Equipment models	Synopsis
	Tutorials
	Summative Assessment

6.3.Tools for the Teaching and learning

Theory subjects	Practical Subjects	
PowerPoints presentation	White boards	
• Videos	• Glassware	
• Flash Card	Chemicals	
• Models	• Instruments	
Software	• Equipment	
• Charts	Software	
Smart Boards	• Models	
White boards	Plants/Crude Drugs	
Online Platform	• Animal	

6.4. COURSE CONTENT

6.1. Theoretical Aspect:

Order	Topic list/units	Subtopics list	Number	Contact
			of	Hours
			Weeks	
1	Unit-I: Process chemistry	Introduction, Synthetic strategy Stages of scale up process: Bench, pilot and large scale process.In-process control and validation of large scale process.Case studies of some scale up process of APIs.Impurities in API, types and their sources including Genotoxic impurities	03	12 Hrs
2	UNIT-II Unit operations	 a) Extraction: Liquid equilibria, extraction with reflux, extraction with agitation, counter current extraction. b) Filtration: Theory of filtration, pressure and vacuum filtration, centrifugal filtration, c) Distillation: azeotropic and steam distillation d) Evaporation: Types of evaporators, factors affectingevaporation. e) Crystallization: Crystallization from aqueous, non-aqueous solutions factors affecting crystallization, Nucleation. Principle and general methods of Preparationof polymorphs, hydrates, solvates and amorphous APIs. 	03	12 Hrs
3	UNIT-III Unit Processes - I	 a) Nitration: Nitrating agents, Aromatic nitration, kineticsand mechanism of aromatic nitration, process equipmentfor technical nitration, mixed acid for nitration, b) Halogenation: Kinetics of halogenations, types of halogenations, catalytic halogenations. Case study onindustrial halogenation process. c) Oxidation: Introduction, types of oxidative reactions, Liquid phase oxidation with oxidizing agents. Nonmetallic Oxidizing agents such as H2O2, sodium hypochlorite, 	03	12 Hrs

		Oxygen gas, ozonolysis.		
4	UNIT-IV	a) Reduction: Catalytic hydrogenation,		
	Unit Processes -	Heterogeneous and homogeneous catalyst;	03	12 Hrs
	II	Hydrogen transfer reactions, Metal hydrides.		
		Case study on industrial reduction process.		
		b) Fermentation: Aerobic and anaerobic		
		fermentation. Production of		
		i. Antibiotics; Penicillin and Streptomycin,		
		ii. Vitamins: B2 and B12		
		iii. Statins: Lovastatin, Simvastatin		
		c) Reaction progress kinetic analysis		
		i. Streamlining reaction steps, route selection,		
		ii. Characteristics of expedient routes,		
		characteristics of cost-effective routes, reagent		
		selection, families ofreagents useful for scale-		
		up.		
5	UNIT-V	a) MSDS (Material Safety Data Sheet), hazard		
	Industrial Safety	labels of chemicals and Personal Protection	03	12 Hrs
		Equipment (PPE)		
		b) Fire hazards, types of fire & fire		
		extinguishers c) Occupational Health & Safety		
		Assessment Series 1800(OHSAS-1800) and		
		ISO-14001(Environmental Management		
		System), Effluents and its management		
	TOTAL			60 Hrs

6.2.Practical Aspects

Order	Name of Experiment	Number of Weeks

7.0. ASSESSMENT MECHANISM:

Sr.	Assessment Mechanism	Week due	Marks	Proportion of Final
No.				Assessment
1	Continuous Assessment (Theory)	2 nd week of	10	4%
		every month		
2	Sessional (Internal Theory exam)	As per schedule	15	6%
		of examination		
3	Continuous Practical Assessment	Weekly during	20	8%
	(Sessional Practical exam)	practical		
4	Sessional (Internal Practical exam)	As per schedule	30	12%
		of examination		
5	Final exam (theory)	As per University	75	30%
6		at end of course	100	400/
0	Final exam(practical)		100	40%
Total			150	100%

8.0.STUDENT SUPPORT:

Office hours/week	Other procedures	
Two hours minimum	MENTORING AND GUIDING	

9.0.TEACHER'S AVAILABILITY FOR STUDENT SUPPORT:

Days	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Time	4:00-5:00	4:00-5:00	4:00-5:00	4:00-5:00	4:00-5:00	4:00-5:00

10.0. LEARNING RESOURCES:

Sr. No.	Title of Learning Material	Details
1	Text books	1. Process Chemistry in the Pharmaceutical
		Industry: Challenges in an Ever-
		Changing Climate-An Overview; K.
		Gadamasetti, CRC Press.
		2. Pharmaceutical Manufacturing
		Encyclopedia, 3rd edition, Volume 2.
		3. Medicinal Chemistry by Burger, 6 th
		edition, Volume 1-8.
		4. W.L. McCabe, J.C Smith, Peter Harriott.
		Unit operations of chemical
		engineering, 7th edition, McGraw Hill

		5. Polymorphism in Pharmaceutical Solids
		.Dekker Series Volume 95 Ed: H
		G Brittain (1999)
		6. Regina M. Murphy: Introduction to
		Chemical Processes: Principles,
		Analysis, Synthesis
		7. Peter J. Harrington: Pharmaceutical
		Process Chemistry for Synthesis:
		Rethinking the Routes to Scale-Up
		8. P.H.Groggins: Unit processes in organic
		synthesis (MGH)
		9. F.A.Henglein: Chemical Technology
		(Pergamon)
		10. M.Gopal: Dryden's Outlines of Chemical
		Technology, WEP East-WestPress
		11. Clausen, Mattson: Principle of Industrial
		Chemistry, Wiley Publishing Co.,
		12. Lowenheim & M.K. Moran: Industrial
		Chemicals
		13. S.D. Shukla & G.N. Pandey: A text book
		of Chemical Technology Vol. II.
		Vikas Publishing House
		14. J.K. Stille: Industrial Organic Chemistry
		(PH)
		15. Shreve: Chemical Process. Mc Grawhill.
		16. B.K.Sharma: Industrial Chemistry, Goel
		Publishing House
		17. ICH Guidelines
		18. United States Food and Drug
		Administration official website www fda gov
2	Reference material	1) P.H.Groggins: Unit processes in organic
_		synthesis (MGH)
		2 CVS Subrahmanyam -Pharmaceutical
		Engineering Unit Operations Principles And
		Practice Vallahh Prakashan 2002
		3 United States Food and Drug
		Administration official website www.fda.gov
2	E materials and websites	DDT's Text Notes Soft copies (word/Ddf
5	E-materials and websites	files)
4	Other learning material	College WhatsApp Group
		rr cour

11.0. FACILITIES REQUIRED:

Sr. No.	Particular of Facility Required
---------	---------------------------------

1	Lecture Rooms (capacity for 60 students)
2	Laboratory (capacity for 20 students)
3	Computing resources: PC with latest version and hardware/software and utilization
	of open source and licensed application software
4	Other resources: Appropriate laboratory tools, Chemicals, Glass ware, Apparatus,
	Instrumentation

12.0. COURSE IMPROVEMENT PROCESSES:

12.1. Strategies for obtaining student feedback on effectiveness of teaching:

Course delivery evaluation by students using: Questionnaire forms and online questionnaires

12.2. Other strategies for evaluation of teaching by the instructor or by the

department:

Periodic review by Academic Planning & Monitoring Committee and departmental review committee, Observations and assistance of colleagues, External assessments by advisors/ examiners and auditors.

12.3. Process for improvement of teaching:

Use of ICT tools, teaching aids, Simultaneous practical orientation and theory classes (SPOT), Adoption of reflective teaching.

12.4. Describe the planning procedures for periodically reviewing of course effectiveness and planning for improvement:

Periodic review by departmental meeting, Review of course delivery and outcome through assessment and feedback from all stake holders.

12.5. Course development plans:

Provide inputs for course improvement and update to University Course development Committees (Board of Studies)

13.0. INFORMATION ABOUT FACULTY MEMBER RESPONSIBLE FOR THE COURSE:

Name	Dr. Mirza Shahed Baig (MSB)
Location	Department of Pharmaceutical Chemistry
Contact Detail (e-mail &cell no.)	mirzashahedbaig@ybccpa.ac.in & 9890336238
Office Hours	10:00 AM to 5:00 PM